姓名: 王勤
办公电话: 027-88668081; 18507140137 (手机)
电子邮件: qin.wang@hubu.edu.cn
通讯地址: 湖北省武汉市武昌区友谊大道368号
湖北大学生命科学学院B座518
基本情况简介: 博士, 现任湖北大学生命科学学院副教授
主要研究领域: 微生物代谢工程, 生物材料学
学习简历:
1999年9月-2003年6月 学士 南京大学环境学院
2003 年9月—2006年6月 硕士 南京大学环境学院
2006年8 月—2012 年 5 月 博士 纽约州立大学环境科学与森林学学院化学系
工作简历:
副教授-湖北大学生命科学学院 陈守文教授研究团队
· 构建胞外生产弹性丝蛋白的重组地衣芽孢杆菌
· 构建高产杆菌肽地衣芽孢杆菌菌株
· 地衣芽孢杆菌中氨基酸代谢调控机理研究
博士后研究员—塔夫斯大学 (Tufts University) 生物医学工程系
David L. Kaplan 教授实验室
· 构建转基因大肠杆菌生产重组蜘蛛丝蛋白
· 文库构建和高通量筛选重组弹性丝蛋白 (silk elastin like proteins)
· 生物发酵工程优化生产重组弹性丝蛋白
讲师—塔夫斯大学 (Tufts University) 生物医学工程专业,重组DNA技术课程
研究助理-纽约州立大学环境科学与森林学学院化学专业
Christopher T. Nomura教授实验室
· 基因表达水平监测和代谢途径鉴定可降解塑料聚羟基脂肪酸酯 (PHA)生产细菌, Pseudomonas putida.
· 构建转基因大肠杆菌从廉价碳源中生产中链聚羟基脂肪酸酯 (medium-chain-length PHA)
· 中短链聚羟基脂肪酸酯共聚物 (medium-chain-length-short-chain-length PHA)物理和机械性质测试
承担科研项目情况:
湖北省自然科学基金(2015CFB214):动态生物材料弹性丝蛋白(Silk-Elastin-Like Proteins)在地衣芽胞杆菌中的生产及优化, 2015/01-2016/12, 主持人
国家自然科学基金(31500074):甘氨酸和甘氨酰tRNA合成代谢对弹性丝蛋白在地衣芽孢杆菌中表达的影响机制,2016/01-2018/12, 主持人
武汉市科技局应用基础研究计划(2016060101010062):地衣芽孢杆菌高效表达以及胞外分泌弹性丝蛋白的研究, 2016/08-2018/08, 主持人
代表性论文:
[1] Xiao J, Peng B, Su Z, Liu A, Hu Y, Nomura CT, Chen S*, Wang Q*, (2020) Facilitating Protein Expression with Potable 5’-UTR secondary structures in Bacillus licheniformis, ACS Synthetic Biology, 9: 1051-1058.
[2] Yu W, Li D, Jia S, Liu Z, Nomura CT, Li J, Chen S, Wang Q*, (2019) Systematic metabolic pathway modification to boost L-ornithine supply for bacitracin production in Bacillus licheniformis DW2, Applied Microbiology and Biotechnology, 103 (20): 8383-8392.
[3] Qiu Y, Wang Q, Zhu C, Yang Q, Zhou S, Xiang Z, Chen S, (2019) Deciphering metabolic responses of biosurfactant lichenysin on biosynthesis of poly-γ-glutamic acid, Applied Microbiology and Biotechnology 103: 4003-4015. (共同一作)
[4] Liu Z, Yu W, Nomura CT, Li J, Chen S, Yang Y, Wang Q.* 2018. Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2. Applied Microbiology and Biotechnology 102:6935-6946.
[5] Zuo S, Xiao J, Zhang Y, Zhang X, Nomura CT, Chen S, Wang Q.* 2018. Rational design and medium optimization for shikimate production in recombinant Bacillus licheniformis strains. Process Biochemistry 66:19-27.
[6] Wang Q, Zheng H, Wan X, Huang H, Li J, Nomura CT, Wang C, Chen S. 2017. Optimization of Inexpensive Agricultural By-Products as Raw Materials for Bacitracin Production in Bacillus licheniformis DW2. Applied Biochemistry and Biotechnology 183:1146-1157.
[7] Wang, Q., Xia, X., Huang, W., Lin, Y., Xu, Q., Kaplan. D.L. * 2014. High throughput screening of dynamic silk-elastin -like protein biomaterials. Advanced Functional Materials 24(27):4303-4310.
[8] Wang, Q., Zhu,C., Yancone,T., Nomura, C.T.*.2012. The effect of co-substrate feeding on polyhydroxyalkanoate (PHA) homopolymer and copolymer production in recombinant Escherichia coli LS5218. Journal of Bioprocess Engineering and Biorefinery 1(1): 86-92.
[9] Wang, Q., Tappel, R.C., Zhu, C., Nomura, C.T.*.2012. Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Applied and Environmental Microbiology 78(2): 519-527.
[10] Wang, Q., Nomura, C.T.*.2010. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putidaKT2440 grown on different carbon sources. Journal of Bioscience and Bioengineering 110(6): 653-659. (IF:1.8)
[11] Wang, Q., Mueller, A.P., Leong, C.R., Matsumoto, K., Taguchi, S., Nomura, C.T.*.2010. Quick and efficient method for genetic transformation of biopolymer-producing bacteria. Journal of Chemical Technology and Biotechnology 85(6): 775-778. (IF:2.5)
[12] Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S. 2018. Enhanced production of poly-gamma-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnology and Bioengineering doi:10.1002/bit.26774.
[13] Cai D, He P, Lu X, Zhu C, Zhu J, Zhan Y, Wang Q, Wen Z, Chen S. 2017. A novel approach to improve poly-gamma-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02. Scientific Repprt 7:43404.
[14] Cai D, Wang H, He P, Zhu C, Wang Q, Wei X, Nomura CT, Chen S. 2017. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis. Microbial Cell Factory 16:70.
[15] Huo Y, Zhan Y, Wang Q, Li S, Yang S, Nomura CT, Wang C, Chen S. 2018. Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02: enzymatic properties and efficient functions for acetoin/butanediol and L-valine biosynthesis. Bioprocess Biosyst Eng 41:87-96.
[16] Li X, Wang D, Cai D, Zhan Y, Wang Q, Chen S. 2017. Identification and High-level Production of Pulcherrimin in Bacillus licheniformis DW2. Appl Biochem Biotechnol 183:1323-1335.
[17] Tian G, Wang Q, Wei X, Ma X, Chen S. 2017. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-gamma-glutamic acid production. Enzyme Microb Technol 99:9-15.
[18] Wang D, Wang Q, Qiu Y, Nomura CT, Li J, Chen S. 2017. Untangling the transcription regulatory network of the bacitracin synthase operon in Bacillus licheniformis DW2. Res Microbiol 168:515-523.
[19] Wang D, Zhan Y, Cai D, Li X, Wang Q, Chen S. 2018. Regulation of the Synthesis and Secretion of the Iron Chelator Cyclodipeptide Pulcherriminic Acid in Bacillus licheniformis. Appl Environ Microbiol doi:10.1128/AEM.00262-18.
[20] Zhan Y, Zhu C, Sheng B, Cai D, Wang Q, Wen Z, Chen S. 2017. Improvement of glycerol catabolism in Bacillus licheniformis for production of poly-gamma-glutamic acid. Appl Microbiol Biotechnol 101:7155-7164.
[21] Zhu C, Xiao F, Qiu Y, Wang Q, He Z, Chen S. 2017. Lichenysin production is improved in codY null Bacillus licheniformis by addition of precursor amino acids. Appl Microbiol Biotechnol 101:6375-6383.
[22] Huang,W., Tarakanova,A., Dinjaski,N., Wang,Q., Xia,X., Chen,Y., Wong,J., Buehler,M., Kaplan,D.L.*. 2016. Design of Multistimuli Responsive Hydrogels Using Integrated Modeling and Genetically Engineered Silk–Elastin-Like Proteins. Advanced Functional Materials 26(23):4113-4123.
[23] Tappel, R.C., Pan, W., Bergey, N.S., Patterson, I.L., Wang, Q., Ozumba, O.A., Matsumoto, K., Taguchi, S., and C.T. Nomura (2014). Engineering Escherichia coli for improved production of short-chain-length-co-medium-chain-length poly[(R)-3-hydroxyalkanoate] (SCL-co-MCL PHA) copolymers from renewable non-fatty acid feedstocks. ACS Sustainable Chemistry Engineering 2(7): 1879-1887.
[24] Liang C, Huo Y, Qi G, Wei X, Wang Q, Chen S*, 2015, Enhancement of L-valine production in Bacillus licheniformis by blocking three branched pathways, Biotechnology Letters 37(6):1243-1248.
[25] Tappel, R.C., Wang, Q., Nomura, C.T.*.2012. Precise control of repeating unit composition of poly(3-hydroxyalkanoates) synthesized by recombinant Escherichia coli. Journal of bioscience and bioengineering 113(4): 480-486.
专利 :
Nomura, C.T., Tappel, R.C. and Q. Wang (2012). Engineered strain for the production of specific R-3-hydroxyalkanoic acids and poly-R-3-hydroxyalkanoate polymers with defined monomer unit composition. Patent No:US2014/0349353. 11/27/2014
书籍:
Current Developments in Biotechnology & Bioengineering,Chapter 15:Production and application of polyglutamic acid,Elservier,2015